My-library.info
Все категории

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]. Жанр: Радиотехника издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Искусство схемотехники. Том 1 [Изд.4-е]
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
275
Читать онлайн
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] - описание и краткое содержание, автор Пауль Хоровиц, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.

Искусство схемотехники. Том 1 [Изд.4-е] читать онлайн бесплатно

Искусство схемотехники. Том 1 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц

Рис. 3.69. Зависимость заряда затвора МОП-транзистора типа IRF520 от UЗИ.


Горизонтальная полка на графике наблюдается при напряжении включения, когда быстро падающее напряжение стока вынуждает схему возбуждения затвора впрыскивать дополнительный заряд в Crss (эффект Миллера). Если бы емкость обратной связи не зависела от напряжения, то эта горизонтальная часть графика была бы пропорциональна напряжению стока, после чего кривая продолжалась бы с прежним наклоном. На самом деле емкость обратной связи м при малом напряжении быстро возрастает (рис. 3.70), а это означает, что эффект Миллера больше всего проявляет себя на той части сигнала, когда напряжение на стоке мало. Этим объясняется изменение наклона кривой заряда затвора, а также тот факт, что длина горизонтальной полки почти не зависит от напряжения стока.



Рис. 3.70. Емкости в мощном МОП-транзисторе типа IRF520. Измерения проводились при Uзи = 0. CissСзи + Сзс (сток и исток закорочены); Crss = Сзс; Cоss = Сси + (Сзи·Сзс)/(Сзи + Сзс) ~= Сси + Сзс.


Упражнение 3.20. Как зависимость Crss от напряжения объясняет изменение наклона кривых заряда затвора?


Дополнительные моменты, требующие внимания. Есть еще некоторые вещи, которых не выносят МОП-транзисторы и о которых вам следует знать. Все изготовители мощных МОП-транзисторов соединяют подложку с истоком прямо в корпусе. Поскольку подложка образует с каналом диод, то это означает, что фактически в этих транзисторах между истоком и стоком имеется диод (рис. 3.71); некоторые изготовители даже явно рисуют этот диод на схемном изображении выпускаемого ими МОП-транзистора, чтобы вы об этом не могли забыть.



Рис. 3.71. В мощных МОП-транзисторах подложку соединяют с истоком, в результате чего образуется диодный переход сток-исток.


Это в свою очередь означает, что вы не можете использовать мощный МОП-транзистор как ненаправленный прибор или же по меньшей мере не можете подать на переход сток-исток напряжение обратной полярности, превышающее прямое падение напряжения на диоде. Например, вы не сможете использовать мощный МОП-транзистор для сброса в нуль интегратора, возбуждаемого биполярным сигналом; не получится также применить его и в качестве аналогового ключа для биполярных сигналов. Эта проблема не возникает в ИМС на МОП-транзисторах (аналоговых ключах, например) — в них подложка соединена с выводом источника питания отрицательной полярности.

Еще один капкан для неосторожных — это тот факт, что напряжение пробоя затвор-исток (обычная величина ±20 В) меньше, чем напряжение пробоя сток-исток (оно изменяется в диапазоне от 20 до 1000 В). Это не имеет значения, если на затвор подаются сигналы возбуждения от низковольтной цифровой логики, однако транзистор мгновенно выйдет из строя, если на затвор ему подать сигнал со стока предыдущего МОП-транзистора с полной амплитудой напряжения стока.

И наконец, о защите затвора. В последнем разделе этой главы мы говорим о том, что все МОП-транзисторы исключительно чувствительны к электростатическим разрядам, вызывающим пробой изолирующего затвор окисла. В отличие от ПТ или других устройств с p-n-переходами, в которых лавинный ток перехода может безопасным образом разрядить возникшее перенапряжение, МОП-транзисторы необратимо повреждаются при однократном мгновенном пробое затвора. Поэтому очень полезно включать в цепь затвора последовательные резисторы сопротивлением 1-10 кОм, особенно там, где сигнал на затвор поступает с другой печатной платы. Это сильно уменьшает возможность повреждения транзистора, а также предотвращает перегрузку выхода предыдущей схемы, так как самый общий симптом такого рода повреждения состоит в том, что через затвор начинает проходить значительной величины постоянный ток. Еще одно, за чем необходимо следить — не оставить затвор МОП-транзистора неподключенным, так как он намного более подвержен пробою, когда на нем накапливается плавающий потенциал (нет цепи разряда статического электричества, которая в некоторой мере снижает опасность пробоя). Это может случиться неожиданно, если сигнал на затвор поступает с другой печатной схемы. В этом случае, т. е. там, где источник сигнал находится вне данной платы, лучше всего поставить в схему между затвором и истоком любого такого МОП-транзистора резистор (скажем, 100 кОм-1 МОм).

Сравнение сильноточных ключей на МОП-транзисторах и биполярных транзисторах. Мощные МОП-транзисторы в большинстве случаев являются хорошей заменой мощным биполярным транзисторам. Сегодня они при тех же параметрах стоят несколько больше, однако они проще в управлении и не подвержены вторичному пробою, ограничивающему область безопасной работы (см. рис. 3.66).

Помните, что МОП-транзистор во включенном состоянии ведет себя как малое сопротивление (а не как насыщенный биполярный транзистор). Это может оказаться выгодным, так как «напряжение насыщения» явным образом стремится к нулю при малых токах стока. Существует общее представление о том, что МОП-транзисторы не насыщаются так же при больших токах, однако наши исследования показали, что это представление глубоко ошибочно. В табл. 3.6 мы выбрали несколько сравнимых пар (биполярный p-n-транзистор и n-канальный МОП-транзистор) и выписали для них паспортные данные по UКЭ нас или RСИ вкл.



Слаботочный МОП-транзистор выглядит слабо в сравнении со своим биполярным собратом, однако в диапазоне 10–50 А, 0-100 В МОП-транзистор работает лучше. Обратите особое внимание на исключительно высокий ток базы, необходимый для того, чтобы биполярный транзистор вошел в глубокое насыщение — 10 % и более от величины коллекторного тока (!) — в сравнении с 10 В смещения (ток нулевой), при которых обычно специфицируются данные на МОП-транзистор. Отметим также, что высоковольтные МОП-транзисторы (например, с UСИ проб > 200 В) имеют как правило большее RСИ вкл и более высокие значения температурных коэффициентов, чем низковольтные устройства. Наряду с параметрами насыщения в таблице приведены значения емкостей, так как их величина у мощных МОП-транзисторов часто больше, чем у биполярных транзисторов с такой же токовой нагрузочной способностью; для некоторых схемных применений (особенно там, где важна скорость переключения) можно рассматривать произведение емкости на напряжение насыщения как показатель качества применяемого транзистора.

Запомните: мощные МОП-транзисторы можно использовать в качестве замены биполярных транзисторов в мощных линейных схемах, например в усилителях звуковой частоты и стабилизаторах напряжения (о последних мы будем говорить в гл. 6). Мощные МОП-транзисторы выпускаются также в виде p-канальных приборов, хотя среди n-канальных приборов их разновидностей гораздо больше.

Некоторые примеры мощных переключательных схем на МОП-транзисторах. На рис. 3.72 показаны три разных способа использования МОП-транзистора для управления мощностью постоянного тока, которая направляется в некоторую подсхему и подачу которой нам хотелось бы включать и выключать. Если мы имеем измерительный прибор с батарейным питанием, и измерения с его помощью производятся от случая к случаю, тогда можно применить схему а, которая отключает потребляющий значительную мощность микропроцессор на все время, пока измерения не проводятся. Здесь мы применили p-канальный МОП-ключ, переключаемый 5-вольтовым логическим сигналом. Эта «5-вольтовая логика» представляет собой цифровые КМОП-схемы, которые находятся в рабочем состоянии даже тогда, когда микропроцессор отключен (напомним: КМОП-логика имеет статическую мощность рассеяния, равную нулю). В гл. 14 мы предлагаем гораздо подробнее рассказать о такого рода схеме «отключения питания».



Вторая схема (рис. 3.72, б) переключает подачу в нагрузку питания +12 В при значительном токе нагрузки; это может быть радиопередатчик или что-то подобное. Поскольку у нас есть лишь 5-вольтовый диапазон логического сигнала, то для создания «полномасштабного» сигнала амплитудой 12 В, который будет управлять p-канальным МОП-вентилем, мы использовали слаботочный n-канальный ключ. Обратите внимание на высокое сопротивление резистора в цепи стока n-канального МОП-транзистора, что здесь совершенно оправдано, так как ток в цепи затвора p-канального МОП-вентиля не течет (даже при полном токе через ключ 10 А) и нам не требуется высокая скорость переключения в такого рода применениях.


Пауль Хоровиц читать все книги автора по порядку

Пауль Хоровиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Искусство схемотехники. Том 1 [Изд.4-е] отзывы

Отзывы читателей о книге Искусство схемотехники. Том 1 [Изд.4-е], автор: Пауль Хоровиц. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.